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Abstract:-  Hybrid Composites Are Usually Used When A Combination Of Properties Of Different Types Of 

Fibres Have To Be Achieved, Or When Longitudinal As Well As Lateral Mechanical Performances Are Required. 

In This Work Unidirectional Carbon And Woven Glass Fabric Used  As Fibres To Form A Hybrid Composite 

Laminate. Whereas Epoxy And Polyester Resins Used Individually In Different Laminates As Matrix. These 

Laminates Were Made In 0-90,+-45,And +-55 Degree Orientations. These Specimens Are Prepared In The 

Laboratory Using Compression Moulding Technique.  Tensile Test Is Performed On  The Above Laminates To 

Estimate Ultimate Tensile Stress And Later These Specimens Are Undergone To Cyclic Loading On Fatigue 

Testing Equipment To Study The Fatiigue Failure Behaviuor  Of Composite Laminates 

 

I. Introduction 
 Hybrid Composites Most Frequently Relates To The Kinds Of Fibre-Reinforced Materials,  Usually Resin-

Based, In Which Two Types Of Fibres Are Incorporated Into A Single Matrix. The Concept Is A Simple 

Extension Of The Composites Principle Of Combining Two Or More Materials So As To Optimize Their Value 

To The Engineer, Permitting The Exploitation Of Their Better Qualities While Lessening The Effects Of Their 

Less Desirable Properties. As Such, The Definition Is Much More Restrictive Than The Reality. Any 

Combination Of Dissimilar Materials Could In Fact Be Thought Of As A Hybrid. A Classic Example Is The Type 

Of Structural Material In Which A Metal Or Paper Honeycomb Or A Rigid Plastic Foam Is Bonded To Thin 

Skins Of Some High-Performance Frps, The Skins Carrying The High Surface Tensile And Compressive Loads 

And  The Core Providing Lightweight (And Cheap) Structural Stability.  

 

The combination of sheets of aluminium alloy with laminates of fibre-reinforced resin, as in the commercial 

product ARALL (aramid-reinforced aluminium, Davis, 1985) is a related variety of layered hybrid, and the 

mixing of fibrous and particulate fillers in a single resin or metal matrix produces another species of hybrid 

composite.  

 

A hybrid laminate includes plies of different materials within its lay-up. In this case every ply is identified 

by its fibre orientation angle and a subscript on the angle identified the type or material. 

 

 

 

 

 

 

 

 

                            

 Angle ply laminates: an angle ply laminate has a lay-up where successive plies alternate between +θ and – θ in 

fibre orientation. Based on this definition, angle ply laminates with an odd number of plies are mid plane 

symmetric but are not balanced and angle ply laminates with an even number of alternating + θ and – θ plies 

above the mid plane. A [±45]s lay-up is an example. The mechanical response of angle ply laminates provides an 

explanation for the use of ±45
0
 plies at structural locations that require large shear stiffness. A set of ±45

0
 plies 
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increase the  shear stiffness to a  great extent. In the axial stiffness 90
0
 plies are selected to maximize the 

transverse stiffness and 45
0
 plies are selected to maximize the shear stiffness of the lamina 

 Influence of fibre orientation: strength and stiffness of a composite laminate depends on the orientation of the 

plies with reference to the load direction. Proper selection of ply orientation is necessary to provide a structurally 

efficient design. As stated above a composite part might require 0
0
 plies to react to axial loads, ± 45

0 
to react the 

shear loads and 90
0
 plies to react to the side loads. For example a lay-up of 50% of 0

0
 plies and 50% of ± 45

0
 

plies will have strength and stiffness equivalent to those of aluminium when loaded in the 0
0
 direction. 

 

NOMENCLATURE 

Y is the instantaneous stiffness of the laminate  

Y0   Represents the stiffness of the laminate (where further    reduction in stiffness   was not observed due to 

pivoting state occurrence in the specimen.)  

A1    is the constant obtained by the software from regression analysis 

X   Represent number of fatigue cycles the specimen undergone 

1/t   Represents the stiffness decay constant  

M= bending moment 

I= Moment of inertia 

 

FLEXURAL FATIGUE FAILURE ANALYSIS 

1.preparation of laminate- manufacturing technique 

2.preparation of carbon-glass-epoxy  composite laminate by compression moulding technique 

3.preparation of carbon-glass-polyster hybrid composite laminate 

 

EVALUATION OF TENSILE PROPERTIES OF COMPOSITE LAMINATES 

CARBON-GLASS-EPOXY At [ ±0-90
0
] ORIENTATION. 

 CARBON-GLASS-EPOXY HYBRID COMPOSITE LAMINATE[±45
0
] 

GLASS-POLYSTER HYBRID COMPOSITE[±45
0
] 

CARBON-GLASS-POLYSTER HYBRID COMPOSITE[±55
0 

 

Estimation of bending load to be simulated for flexural fatigue analysis by Flexural fatigue Test-Rig The 

basic definition of high cycle fatigue , the stresses induced during cyclic loading should be well below the 50% 

of the ultimate tensile stress of the specimen subjected to fatigue loading. In view of simulating such stresses the 

following calculations provides the estimation of bending loads to be simulated on specimen. 

 M= W* L where W= bending load : L= effective length of the specimen. 

Also I= Moment of inertia is equal to bt
3
/12: where b= width of the specimen  t= thickness of the specimen. 

 The load to be simulated to be estimated from bending equation M / I = fb  / Y:  fb = bending stresses to be 

simulated, Y= half of the thickness of the specimen. 

 

II. Resultsan Conclusions 
As the flexural fatigue failure behaviour of laminates are exhibiting pattern of continuous decay of stiffness with 

respect to number of cycles of load application. The pattern of the stiffness degradation curve analysed origin lab 

software.  

 
SNO Degree of orientation Material Ultimate stress 

N/mm2 

Breaking load N 

1 [±0-90 o] Carbon-glass-epoxy 427.2  MPa 178N 

2 [±45 o] Carbon-glass-epoxy 307.2  MPa 128 N 

3 [± 55 o] Carbon-glass-Epoxy 340.8 MPa 142 N 

4 [±0-90 o] Carbon-Glass-Polyester 202.9 MPa 84.56 N 

5 [±45 o] Carbon-Glass-Polyester 275.73MPa 114.89 N 

6 [± 55 o] Carbon-Glass-Polyester 314.08MPa 130.87 N 
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CARBON-GLASS-EPOXY HYBRID [±0-90
 o
]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CARBON-GLASS-EPOXY HYBRID [±45
 O

] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CARBON-GLASS-EPOXY [±55
0
] COMPOSITE LAMINATE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ARBON-GLASS-POLEYSTER HYBRID [±0-45
 o
] 

 

 

 

Stiffness degradation 

behaviour of carbon-glass-

epoxy [±0-90
0
]10 orientation 

laminate with angle ply 

orientation sequence of 

stacking 
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CARBON-GLASS-EPOXY AT ±45
0
 COMPOSITE LAMINATE

Equation y = A1*exp(-x/t1) + y0

Adj. R-Squa 0.98413

Value Standard Err

B y0 55.04196 0.51584

B A1 65.2711 0.93948

B t1 11827.066 402.02871
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Stiffness 

degradation behaviour 
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[±0-55
0
]10 orientation 

laminate with angle ply 

orientation sequence of 

stacking 
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CARBON-GLASS-EPOXY COMPOSITE LAMINATE AT ±55
0

Equation y = A1*exp(-x/t1) + y0

Adj. R-Squ 0.99557

Value Standard Er

B y0 82.22607 0.2682

B A1 60.23612 0.44561

B t1 12656.662 230.81544
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CONSOLIDATED FLEXURAL FATIGUE TEST RESULTS OF  [0
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Equation y = A1*exp(-x/t1) + y0

Adj. R-Squar 0.98773
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Stiffness degradation 

behaviour of carbon-glass-

polyester [±55
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]10 angle ply 

orientation sequence of 

stacking 
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Equation y = A1*exp(-x/t1) + y0

Adj. R-Squa 0.9934

Value Standard Err
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STACKING OF CARBON-GLASS-EPOXY & CARBON-GLASS-POLYESTER 
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SEQUENCE OF STACKING OF CARBON-GLASS-EPOXY & CARBON-GLASS-POLYESTER 
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Material Angleply 

orientation 

Residual 

stiffness 

after 

pivoting 

1 Carbon-glass-epoxy [0-90
0
] 90.39 

2 Carbon-glass-epoxy [45
0
] 55.04 

3 Carbon-glass-epoxy [55
0
] 82.22 

4 Carbon-glass-

polyester 

[0-90
0
] 54.55 

5 Carbon-glass-

polyester 

[45
0
] 56.41 

6 Carbon-glass-

polyester 

[55
0
] 62.85 

 

 

ANGLE PLY ORIENTATION SEQUENCE OF STACK UP VS. RESIDUAL STIFFNESS AFTER 

PIVOTING 

 

 

 

 

 

 

 

 

 

III. Conclusion: 
1. Flexural fatigue failure behaviour of  carbon-glass-epoxy and carbon-glass-polyester laminates at[± 0-90

0
], 

[±45
0
],[±55

0
] orientations evaluated. 

2. In carbon-glass-epoxy hybrid composite laminate  the [0-90
0
] orientation  exhibits high stiffness reduction 

rate i.e 0.00000045 N/s
2
 up to 250cycles and stiffness reduction rate is slow  0.0000001 N/s

2 
up to35000 

cycles.later no reduction in stiffness observed. This laminate has high bending load of 90.39 N. 

3. For carbon-glass-polyester at [±55
0
] orientation  have high bending load of 62.85 N. stiffness reduction rate 

is high at 0.00000083 N/s
2
 up to 200 cycles and reduction rate is low at 0.0000001 N/s

2
 up to 40000 

cycles.later no reduction in stiffness was observed. 
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